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1 Introduction

1 Introduction

Throughout human history, biological systems have been used as a source of inspira-

tion for technological advances. The human brain being the most complex and compu-

tationally efficient system, its functioning has been extensively studied. Recent findings

regarding the development and adaptation of the Head Direction network in rat pups

[Bjerknes et al., 2015] could prove to be of interest to improve one of the main compu-

tational problems in autonomous robots face, Simultaneous Localization and Mapping

(SLAM) by helping to solve loop-closure.

This project explores the modelling of a self-sustaining spiking neural network with

multiple shifting levels inspired by the biological Head Direction network. The models

were augmented with unsupervised learning through an STDP-like synaptic model in

order to adapt connections to erroneous shifting layers upon detection of a visual signal

as to approach loop-closure.

Loop-closure aims at correcting error accumulated over time in a robots cognitive map

through environmental or uncontrolled factors, such as drift, friction, wind and so on.

This work tries to tackle loop-closure in a Head Direction network. Short-term by re-

setting the robots position correctly on the Head Direction network through a visual

cue. Long-term by learning to map the motor-commands (angular velocity) to the cor-

rect shifting speed of the activity-hill in the neural network. In essence, the learning

would permit robots to continuously adapt their believed position (or rotation in this

case) even with change in environment or through drifting, as to try to learn the best

matching speed for each situation.

Since their discovery near the rat hippocampus in the early ninties [Taube et al., 1990],

Head Direction (HD) cells have been extensively studied in a wide range of fields. In-

deed, HD cells have interesting properties, they are connected in a circular network and

show a preferred firing direction corresponding to the animals believed facing direction

with respect to its environment, somewhat like an internal compass[Taube, 2007]. They

seem to be driven by proprioceptive feedback, such as integration of the heads rota-

tional velocity. They’re also strongly affected by visual signals which take control over

the network when available[Taube, 2007; Song and Wang, 2005]. Since their initial

discovery, they have been found in multiple species such as in drosophilia, non-human

primates and bats[Kim et al., 2017; Robertson et al., 1999; Finkelstein et al., 2014].
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1 Introduction

Several theoretical models have been proposed, most of them have in common that

the network comprises mutual excitatory and/or inhibitory feedback between its neu-

rons[i.a. Song and Wang, 2005; Zhang, 1996].

Recently it has been shown that rat pups already possess such a network as early as

three days before opening their eyes, although rather imprecise. In the first 24 hours

after opening their eyes the network adapts using the new visual signals to improve its

precision and robustness[Bjerknes et al., 2015]. Such discoveries proved to be inter-

esting for a computational problem in SLAM, the problem of generating and updating a

cognitive map while keeping track of the agent within, by being useful for loop closure

as already mentioned. Recent studies have shown the possibility of implementing such

networks on neuromorphic hardware using visual reset to relocalize the robot[Kreiser

et al., 2018]. This project also aims at implementing a similar model as Kreiser et al.

[2018] and extending it by a learning mechanism inspired from the recent studies seen

in rat pups[Bjerknes et al., 2015].

The system developed in this work is composed of three main parts; the HD network,

a first transformation array - also called relational neural network - which serves to

compute the difference between the estimated current direction and the real facing

direction and a second transformation array which maps the current active drive neuron

to a new relay neuron based on the computed error, and drives through STDP on this

new relay neuron. The next paragraphs will go in detail about their origins, functionality

and dynamics; their implementation will be explained in chaptersubsection 2.4.

HD network activity has been modeled using attractor networks since the 90s [Skaggs

et al., 1995; Zhang, 1996; Song and Wang, 2005]. Taube [2007] describes it as follow:

“Continuous attractor networks have been the primary approach for compu-

tationally modeling HD cell activity. These networks contain interconnected

neurons, which involve recurrent excitation onto HD cells of similar preferred

directions and inhibition onto cells with different preferred firing directions.

Once initiated, the network can sustain activity without outside excitation.

The local area of activity (referred to as the activity hill) is moved around

the ring to different directional headings following inputs from idiothetic or

allothetic sources.“

From Taubes description, the HD network shows three main properties: First, once ini-
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Figure 1.1: Depiction of Head Direction cells connectivity. The active neuron (top-most)
locally, laterally excites its neighbours (lines with arrows) while simultane-
ously exerting a global inhibition on every other neuron (lines ending with a
line). Zugaro et al. [2003]

tiated it shows self-sustaining activity, which means even without external input it keeps

the activity up. From [Shinder and Taube, 2014] explains how the firing rate decreases

when HD neurons are in self-sustain and increases during movement. Secondly, the

network shows a preferred firing direction correlated to animals facing direction. This

preferred firing direction shows a local hill of activity, which follows the heading direc-

tion. And thirdly, the HD network takes internal and external inputs to direct the hills

movement. These sources being visual cues, such as known landmarks to help orient

oneself, or, as mentioned before, proprioceptive feedback, such as the heads angular

velocity.

To achieve these properties, a soft Winner-Take-All or ring attroctor network [Zhang,

1996; Taube, 2007; Chen, 2017] model was implemented, in which active neurons

latteraly excite their neighbours while having a global inhibitory effect on the network.

A reset group of neurons driven by a visual cue act as external source of hill movement,

while a group of Drive neurons act as angular velocity (AV) cells[Sharp et al., 2001] and

drive internally generated movement.

On top of this, a (hard) Winner-Take-All model was used on the relay neurons as to

ensure a single firing relay neuron at a time thus having a single shifting layer active
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during and after learning, as seen on figure 1.2.

It has been shown that rats already possess a rudimentary Head Direction network

as early as three days before opening their eyes [Bjerknes et al., 2015] and that they

quickly adapt and correct it over 24 hours after opening them using the new visual

sensory information. This adaptation is believed to be done through synaptic plasticity -

an ability where synaptic connections strengthen or weaken depending on their activity

[Bannerman et al., 2014].

Synaptic plasticity refers to the strengthening or weakening of synapses, which in-

creases or decreases, respectively, the transmission between the connected neu-

rons. These long-lasting effects are commonly called Long-Term Potentiation (LTP)

and Long-Term Depression (LTD) for the strengthening and weakening respectively.

One biological process where plasticity happens is Spike-Time Dependent Plasticity

(STDP), where the timings between pre- and postsynaptic spikes drive the strength-

ening or weakening (hereafter learning or unlearning, respectively) of the connections.

This follows the principle of Donald Hebbs famous principle, paraphrase by Carla Shatz

as "Neurons that fire together, wire together" [Keysers and Gazzola, 2014], and gave

rise to one of the oldest learning algorithms Hebbian Learning.

The main idea of Hebbian learning being that the closer a presynaptic neuron fires

to the postsynaptic one, the bigger the change of the synapses efficieny in transfer-

ring the signal, depending on temporal precedence. Figure 1.3, from van Rossum

et al. [2000], depicts this relationship, Figure 1.3b shows how the synapses potentia-

tion grows bigger the closer the postsynaptic neuron fires right after the presynaptic

one, and vice-versa.
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Figure 1.2: Dynamics and design of 1-Winner-Take-All. The global inhibition (some-
times accompanied by self-excitation) generates a ’One-Winner-Take-All’
behaviour. Even if other cells get excited, none will spike as long as the
current one keeps inhibiting them.
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Figure 1.3: Spike timing-dependent plasticity. a, Synapses are potentiated if the synap-
tic event precedes the postsynaptic spike. Synapses are depressed if the
synaptic event follows the postsynaptic spike. b, The time window for
synaptic modification. The relative amount of synaptic change is plotted
versus the time difference between synaptic event and the postsynaptic
spike. The amount of change falls off exponentially as the time difference
increases.[van Rossum et al., 2000]

6



2 Methods

2 Methods

This section will introduce the different software and libraries used to complete the

project, as well as explain the mathematical models used to describe the neural mod-

els. After presenting the tools, a global overview of the architecture will be presented

before delving into the implementation of each underlying part.

2.1 V-Rep Simulator

For this project V-REP (Virtual Robot Experimentation Platform [Rohmer et al., 2013])

was used to simulate the robot which would implement the neural network model later

described. V-REP is available1 on Windows, macOS and Linux. V-REP comes with

many ready-to-use robots after installation which can be controlled by the users from

the V-REP software interface or through a remote controller written using their remote

API written in C++, Matlab or Python.

As this project is mainly written in Python, V-REP seemed to be the go-to choice for its

simplicity, its price (free for educational purposes) and its pre-installed robot models.

2.1.1 Robot Choice & Setup

This project needed a robot that rotates around itself without moving too far away from

its starting point, additionally it had to have the ability to give visual feedback to report

if the LEDs (or structures, alternatively) were recognized, the Pioneer3-DX was cho-

sen for its stability while rotating (most other ready-to-use robots included in V-REP

would strongly sway during rotation which excluded them from consideration). A virtual

camera was added and connected to the robots frame to obtain visual feedback. The

P3DX, virtual cameras and a preview of the cameras can be seen on figures 2.1 & 2.2.

2.1.2 Light & Structure Detection

For the robot to report that it’s seeing the LED (or the pylon of same color), the cam-

era had to detect over 60% of pixels with the same color code as the visual target.

1http://www.coppeliarobotics.com/
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2 Methods

Figure 2.1: P3DX.

Figure 2.2: Multiple pictures of a run blended together, showing the robots trajectory.
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When the condition was true and thus the visual signal detected, a flag was raised by

switching a bit and reported to python.

2.1.3 Speeds

Controlling the velocity of the robot requires in principle the knowledge of the the radius,

the distance between wheels. Since the robot in this work turns only around itself, the

Instantaneous Center of Curvature lies exactly in the middle between both wheels.

As such the equations the following equations for right- and left-wheel velocities from

Dudek and Jenkin [2010]

ω(R +
l
2

) = Vr

ω(R –
l
2

) = Vl

"Where l is the distance between the centers of the two wheels, Vr, Vl are

the right and left wheel velocities along the ground, and R is the signed dis-

tance from the ICC to the midpoint between the wheels."[Dudek and Jenkin,

2010]

Since the robot in this project will only turn on itself, we have that at any point in time

Vr = –Vl or Vl = Vr = 0. Later in the project, it was discovered that for higher velocities,

the robots motor would show big differences in actual movement between forward and

backwards movement for a same velocity-setting.

Thus, In the end the robot was made to rotate around its right wheel by only changing

the right wheels motor speed.

On V-REP, the speed of the robot is set on a per wheel basis, by setting motors velocity.

This was easily done by computing ω(t) = vw∗rw∗t
Rbot

, where ω(t) is difference in angle (rad)

per time (or angular velocity ), vw is the velocity of the robots wheel, Rbot the robots

radius (0.331m for the P3DX), rw the radius of the robots wheel (0.09751m) and t the

time.

Knowing this, we can easily solve for vw, which gives vw = ω∗RBot
rw∗t

9
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Figure 2.3: Multiple pictures of a run blended together, showing the robots rotation.

2.1.4 V-REP Scene Setup

The P3DX was setup on a blank scene with four LEDs, one on each cardinal direction.

Later the LEDs were replaced by four pylons that could change colors on the fly, which

were better and more consistently recognized during higher speed rotations. Finally,

the robot was set in the middle with a single pylon somewhere around it as seen on

Figure 2.3.

2.1.5 Connecting Python to V-REP

V-REP offers a remote API allowing its control over external applications. After setting

up the files as described on their website2, V-REP can be imported and run in Python

as seen in the code snippet below:

# Impor t V–REPs l i b r a r y

impor t vrep

# Closes a l l ( e x i s t i n g ) open connect ions

vrep . s imxFin ish ( –1)

# S t a r t s communication thread wi th server (VREP) ; ( t r y connect ing )

c l i e n t I D =vrep . s imxStar t ( ’ 127 .0 .0 .1 ’ ,19999 , True , True ,5000 ,5)

i f c l i e n t I D != –1:

p r i n t ( " Connected to remote API server " )

# . . .

e lse :

p r i n t ( " Not connected to remote API server " )

sys . e x i t ( " Could not connect " )

2http://www.coppeliarobotics.com/helpFiles/en/remoteApiOverview.htm
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2.1.6 Gathering Data

V-REP was also used to gather the data of the simulated runs. This data was stored in

tuples which included the current time, a flag stating if the robot was currently seeing

the LED or not, its current true angle (as reported from V-REP) and the nearest neuron

corresponding to that angle.

This data was then saved and exported for later use. An example is included in ap-

pendix (APPENDIX)

2.2 Brian2 Spiking Neural Network Simulator

The more important part of this study is the simulation of a spiking neural network

which was done on Brian2 [Goodman and Brette, 2009].

The Brian2 library is written in Python and provides predefined classes for Neurons,

Synapses and much more. While these classes are given, the user is expected to

specify the neuron models by giving their differential equations. Brian2 offers a tutorial3

which was used to start off this project.

2.2.1 Example: Connecting two groups of neurons via a synapse

1 from br ian2 impor t ∗

2

3 eqs = ’ ’ ’ dv / d t = (1 – v ) / tau : 1 ( unless r e f r a c t o r y ) ’ ’ ’

4

5 # Creat ing two groups of each f i v e neurons

6 n1 = NeuronGroup (5 , eqs , th resho ld= ’ v>–40 ∗mV ’ , rese t= ’ v=–60 ∗mV ’ ,

r e f r a c t o r y = ’ 2 ∗ms ’ )

7 n2 = NeuronGroup (5 , eqs , th resho ld= ’ v>–40 ∗mV ’ , rese t= ’ v=–60 ∗mV ’ ,

r e f r a c t o r y = ’ 2 ∗ms ’ )

8

9 # Se t t i ng parameters

10 n1 . tau = 10 ∗ms

11 n1 . v = –60 ∗mV

12

13 # Creat ing synapses from n1 to n2 ; Se t t i ng c o n n e c t i v i t y ;

3https://brian2.readthedocs.io/
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14 synapse = Synapses ( n1 , n2 , model= ’w : v o l t ’ , on_pre= ’ v_post+=w ’ )

15 synapse . connect ( ’ i == j ’ )

16 synapse .w = 10 ∗mV

17

18 # Running a s imu la t i on f o r 50 m i l l i seconds

19 run (50∗ms)

This very short example shows how a Brian2 script is written.

(Line 1) Start off by importing the Brian2 library. (Line 3) Set the differential equation

(’eqs’) to model the neurons behaviour. (Lines 6, 7) Create two group of each five

neurons. (Lines 10, 11) set the initial values for the defined variables. (Line 14. 16)

Creates the synapses which will connect the source neurons (n1) the target neurons

(n2) - on_pre defines the action of the synapse when a presynaptic (n1) event (spike)

happens, here, the post-synaptic (n2) membrane potential will be increased by w volts,

which is defined as10mV in line 16. (Line 15) connects the neurons via the created

synapses, i == j describes the synaptic connectivity. A connection is made when the

index of the presynaptic neuron (i) is equal to that of the postsynaptic neuron (j) - which

means each neuron from the group n1 is connected 1-to-1 to another neuron with same

index on group n2. Lastly, line 19 runs the simulation for the desired amount of time.
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2.3 Mathematical Models

In addition, models from the NCSBrian2Lib - a library built at the Institute of Neuroinfor-

matics, University of Zurich and ETH Zurich - were used to model the leaky integrate

and fire neuron behaviour and Fusi Synapses to model synaptic plasticity for learning.

2.3.1 Neuron model: Leaky Integrate & Fire

dv
dt

=
vrest – v + Rm× (Iin + xi× Anoise ×

√
second)

tau

This differential equation defines the evolution of a neurons membrane potential. Break-

ing down the right-hand part of the equation:

vrest = the resting membrane potential of the neuron in volts,

Rm = the membrane resistance in ohm,

IIn = the incoming current flow in amperes,

xi ∗ second0.5 ∗ Anoise = the white noise equation from Brian24

Figure 2.4 shows a simulation of three neurons using this model. Neuron 1 has a

current flowing, while neurons 2 & 3 do not. Neuron 3 on the other hand depicts the

effect of leakiness over the membrane potential, whenever it gets depolarized without

spiking, the membrane potential tends to go back to its resting potential by slowly

leaking.

2.3.2 Synapse model: Voltage-based

Early in the project, a simple voltage-based synaptic model was decided upon. While

not being the most biologically plausible, the idea was that it would reduce the number

of variables and simplify their tuning.

vpost = vpost + w

This synaptic model increases the post-synaptic neurons membrane potential by w

each time the pre-synaptic neuron spikes.

This effect is shown in Figure 2.4, where neuron 1 is driven by a constant current
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Figure 2.4: Neuron 1 (green, top) driven by a constant current, excitatorily connected
to Neuron 2 (blue, middle), enough voltage is passed by the voltage-based
synapse to incite a spike from neuron 2, whenever neuron 1 spikes. Neuron
2 excitatorily connects to neuron 3 (red, bottom), transfers just about 10mV
which isnt enough by itself to make neuron 3 spike. The slow leakage
makes neuron 3 be able to integrate two incoming spikes from neuron 2
which brings neuron 3 to threshold, thus, spiking itself.

and upon spiking excites neuron 2 by depolarizing it sufficiently to generate an action

potential. Neuron 2 in turn is connected to neuron 3 but here the weight of w is such

that it is not sufficient to generate an action potential on its own, it effectively requires

2 pre-synaptic spikes in a short time frame (defined by the leakiness of neuron 3).

2.3.3 Synaptic Plasticity, STDP & Fusi Synapses

Lastly this project also focused on the learning behaviour of such HD systems, as has

been seen in nature in rat pups recently[Bjerknes et al., 2015].

It has been shown that rats already possess such a system in a rudimentary state

as early as three days before opening their eyes [Bjerknes et al., 2015] and that they

quickly adapt and correct it over 24 hours after opening them using the new visual

sensory information. This adaptation is believed to be done through synaptic plasticity -

an ability where synaptic connections strengthen or weaken depending on their activity

[Bannerman et al., 2014].

Synaptic plasticity refers to the strengthening or weakening of synapses, which in-
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creases or decreases, respectively, the transmission between the connected neu-

rons. These long-lasting effects are commonly called Long-Term Potentiation (LTP)

and Long-Term Depression (LTD) for the strengthening and weakening respectively.

One biological process where plasticity happens is Spike-Time Dependent Plasticity

(STDP), where the timings between pre- and postsynaptic spikes drive the strength-

ening or weakening (hereafter learning or unlearning, respectively) of the connections.

This follows the principle of Donald Hebbs famous phrase "Neurons that fire together,

wire together", and gave rise to one of the oldest learning algorithms Hebbian Learning.

To model these plastic synapses, Fusi Synapses were developed at INI displaying a

Hebbian behaviour [Brader et al., 2007]. Under this model, LTP happens when the

postsynaptic membrane potential is high, and LTD when it is low. On top of this, the

postsynaptic Ca levels act as stop-learning thresholds.

Equation 1 shows the weight-update function of said Fusi synapse. This weight-update

happens when there is presynaptic activity and is thus defined as the synapses presy-

naptic equation in Brian2.

Equation 2 is the models postsynaptic equation, when the postsynaptic neuron spikes,

the Ca level rises. When the neuron is silent the Ca decays and neither of both condi-

tions in equations 1 can be satisfied - there is no learning.

wF =


wF + w+ if (θlow

up < Ca < θhigh
up ) & (Vpost > θV)

wF – w– if (θlow
down < Ca < θhigh

down) & (Vpost < θV)
(1)

Ca = Ca + wca (2)

wF represents the synaptic weight, w+ and w– the change in weight through LTP or

LTD, Ca indicates the calcium level in the postsynaptic neuron. θlow
up , θhigh

up , θlow
down, θhigh

down

are the thresholds in which Ca has to be in to induce LTP or LTD, up meaning the

threshold in which the Ca-level promotes LTP, down conversely meaning the levels in

which Ca promotes LTD. Finally and most importantly, Vpost indicates the postsynaptic

membrane potential and θV the threshold which will dictate if LTP or LTD happens

depending on Vpost.
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2.4 Implementation and intermediate results

The last couple of chapters presented the underlying models and environment that

were used to inspire and implement the network. The following sections will focus on

the actual implementation of the system. First a global overview of the whole architec-

ture will be presented before delving into each separate part and their intricacies.

2.4.1 System Overview

Figure 2.5 shows the complete final version of the developed neural network. It is

composed of three main parts, the main main part being the HD network which will

represent the instantaneous believed facing direction by integrating rotational velocity

to compute heading.

The HD networks is excitatorily connected to the first transformation array by an copy

of its head direction neurons. This first transformation array driven by visual signals

computes the difference between the believed heading direction and the true heading

direction. The computed error is represented by a layer of neurons representing the

neuron-offset between the nearest neuron to the true angle and the internally computed

head direction neuron when the light was seen.

The first transformation arrays output serves as input to the second transformation

array. That second transformation array is supposed to compute the corrected shift-

layer to excite as to minimize the error over time. This is done by driving the corrected

relay neuron which then competes against the current active one. This forces the drive

neuron to learn / adapt its connection to the new chosen relay neuron.

2.4.2 Head Direction Network

The head direction network is built in layers of group of neurons. The first top-most layer

in figures 2.6 and 2.7 is the HD layer which consists of the head direction neurons.

Each neuron represents a certain angle depending on the number of neurons in that

layer. HD neurons are interconnected in an excitatory and inhibitory fashion as to

generate a soft Winner-Take-All behaviour. Each spiking HD neuron excites its nearest

neighbours locally (number depending on the defined size of the interaction kernel - in

this work the interaction kernel is of size 1), while simultaneously inhibiting every other
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HD neuron globally. This interaction ensures the apparition of a single hill of activity.

On top of this, each active HD neuron also inhibits all Shifting neurons except the ones

with the same index±1 as the active HD neuron.

The middle-part of the HD network consists of the aforementioned Shifting layers.

These Shifting layers connections will define the speed at which the hill of activity will

move. There is a set number of layers each representing a different level of activity-

bump moving speed. Since the angular velocity can be clockwise or counter-clockwise,

there are two whole sets of Shifting layers Right Shift and Left Shift. Each Shifting layer

consists of the same number of neurons as in the HD layer. All shift neurons are con-

nected one-to-one to the Integrated Head Direction (IHD) neurons, which also consist

of the same number of neurons as in the HD layer. The connection is shifted with an

offset of k-neurons, where k is the layer which was assigned to the shift neuron.

The driving force of these Shift neurons, and by extension the movement of the hill

of activity, are the Drive Neurons which are represented left-most on the figure 2.6.

Their role is to generate the spikes that will drive the whole network. They’re driven

by the robots speed-command themselves which injects a set current into the Drive

neurons. The Drive layer consists of as many neuron sub-populations as there are

Shifting layers, thus, they’re also differentiated by Drive Left and Drive Right.

In between the Drive neurons and the Shifting layer are represented the Relay Neu-

rons, for which there is a single neuron per Shifting layer. Each Drive neuron is con-

nected to all Relay neurons (and vice-versa) of all sub-populations by plastic synapses.

These plastic synapses strengthen or weaken their connections to the relay neurons

in a What fires together, wires together fashion or, more precisely, following the STDP

rules. This plasticity, what we call learning, happens during the window in which the

robot receives the visual cue (light or structure). Outside of this window learning does

not happen and the plastic synapses act as non-plastic synapses. On top of this, to en-

sure excitation of a single shift layer, active relay neurons inhibit all other relay neurons

in a Winner-Take-All manner.

Finally, when a shifting layer is excited, the shift neurons which are not inhibited by the

current hill of activity reach their spiking threshold and thus generate a spike. That spike

is transmitted to the IHD layer in a shifted way (as mentioned ed before). IHD neurons

are strongly excitatorily connected to the HD neurons with a one-to-one connectivity
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Figure 2.6: From Kreiser et al. [2018], Head Direction network using a single layer of
shifting neurons. DR, DL represent ’Drive Left’, ’Drive Right’ neurons. Re-
set neurons strongly feed into IHD to incite reset of activity in HD.

to the same indexed neuron. Thus, when the IHD neuron spikes, it elicits a big spike

which overcomes the global inhibition in HD layer. This new hill quickly inhibits the

older hill thanks to the (soft) Winner-Take-All dynamics.

It is important to note that the different horizontal layers depicted in the figure 2.6 are

in fact not connected in a straight line but form a ring, thus the ring attractor dynamics

for the soft WTA.

Development & Results:

The HD network was indeed the most tricky and tedious part to implement and cor-

rectly tune in this project. The simplified Voltage-based synapse model that was used

resulted in a very small range of weights for the desired results. This resulted in three

similar implementations, trying to find the best fit for the project.

At the very beginning, I started implemented a very similar model to the one explained

above, but where HD neurons had no inherent current. The problem was keeping a

self-sustaining activity when there was no movement. Either the hill of activity would
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Figure 2.7: Schematic representation of the Head Direction network developed in this
project. HD Neurons show a hill of activity, laterally exciting their first neigh-
bour. Active HD neurons also inhibit every shift neuron except those with
the same index. Sub-populations of drive neurons wired to specific speeds
excitatorily connect through plastic synapses (light blue) to relay neurons.
These relay neurons excite a whole layer of shift neurons. The resulting
spiking shift-neuron excites an IHD neuron which will strongly excite the
correspondent HD neuron. Green arrows represent excitatory connections.
Blue dashed lines excitatory plastic connections. Gold, dark red and pink,
inhibitory connections.
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die and disappear, or I had to basically keep the three active neurons firing at Brian2s

clock-speed - which was undesirable, and generated other problems, such as unsta-

ble hill-movement, sudden spiking of the whole network, and especially a very rapid

movement of the hill of activity.

A second implementation was inspired by the transformation arrays which will be pre-

sented in the next section. The idea was to sustain hill-activity under no movement

by adding an additional Shifting layer which would represent the stationary robot (and

thus, not actually shifting), basically a “0-shift-layer“. This implementation was rather

easy to achieve, and worked rather well. But it wasn’t a real self-sustaining behaviour,

rather it sustained through a non-shifting activity. Also, since it was biologically not

plausible, I kept searching for a better solution.

Through addition of a noise-signal, which in essence acts as a constant random input

of current, to the first HD network model iteration, it tremendously helped reducing the

explosive behaviour of the shifting layers - but it was random. As such, I ended up

deciding to add current to drive my HD neurons. This current alone would never reach

the spiking threshold. But through increase of membrane-potential by the voltage-

based synapses, I could start the network. By carefully tuning the lateral excitation and

global inhibition, the start of the network transformed into a hill that wouldn’t die down,

even without external input. Moreover, as seen in figure 2.9, the relative difference in

which firing rates between input-driven (integrating angular velocity or visual cues) and

self-sustain corresponded to biological findings[Shinder and Taube, 2014]!

Figures 2.9, 2.10 and 2.11 each depict the activity of 3 HD cells which get excited

by IHD following a shift from the Shift3 layer, before stopping the activity from the cor-

responding drive neuron. Before the hill reaches the cells, there is no spiking activity.

When the shift happens (between 0.1 and 0.2 seconds - red bar), and the active IHD

neuron excites its corresponding HD neurons, it spikes instantly as the excitation from

IHD is huge. This first couple of spikes in the single HD cell are enough to generate a

self-sustaining soft-Winner-Take-All behaviour. After the drive-neuron stops its activity,

the hill-of activity stays on the same spot around the ring-network and lowers its firing

rate by around 40 to 50%, from the average 130Hz during activity to around 50 to 60Hz.

In parallel, the rest of the HD network was implemented. Since the HD network forms

a semi-recurrent neural network, each layer influences the next one, and so on. While
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trying to find a good model for the HD layer, I started implementing the shift layers.

Each shift layer comprises as many neurons as the HD layer. And one layer per set

shifting-speed. Shifting speed, is the speed at which the hill of activity moves in number

of neurons offset from the last state. At the beginning I started with 36 neurons per

layer, which I would increase to 180 per layer by the end of the project, and 5 shifting-

layers, which would increase to 10 by the end. All shift layers can be seen as a grid

of N neurons by L layers. This grid is implemented twice, with mirrored connectivity, to

generate a right-shift (or clockwise) and a left-shift (counter-clockwise).

Connectivity in the here developed HD network is summarized on figure 2.7. Figure 2.6

from Kreiser et al. [2018] shows the same connectivity but for the HD network which

includes a single shift-layer.

As you can see on figure 2.7, the activity hill (red line on top of HD neurons) indicates

where HD neurons are active. In our network, the size of the hill is defined by an in-

teraction kernel of 1 - which means, HD neurons locally-laterally excite 1 neighbour

per side, while inhibiting every HD neuron except itself. On top of this, HD neurons

inhibitory connect to the shift neurons by inhibiting every shift neuron except the ones

right beneath them. In Brian2 terms, every HD neuron inhibits every shift-neuron ex-

cept the ones with corresponding index. Now all shift-neurons are inhibited, the ones

beneath the hill of activity less so. As such, the membrane potential of the shift-neurons

beneath the activity heal require less excitation than the rest to spike.

After implementing the relay neurons, driven by the drive neurons, I connected every

relay neuron to its corresponding shift-layer. As such, when a motor-command was

sent, corresponding to a drive-neuron we would excite a single row of shift layers. The

cross-play of inhibition and excitation gives birth to a single spiking shift-neuron as

seen on in yellow on figure 2.7.

This newly spiking shift neuron is excitatorily connected to an IHD neuron. The number

of neurons it is offset depending on the layer of the shift neuron. I.e: HD4 inhibits every

shit neurons except Shifts4 (Shifts of index 3). If the network is generating input through

integration of angular velocity through the Drive2 (drive layer 2) neurons Shift24 (Shift 4 of

layer 2) will be spiking. That Shift14 neuron being part of layer ’2’ will excite an Integrated

Head Direction (IHD) offset by ’2’. In Figure 2.7 the network is driven by the right drive

neuron, as such, the hill of activity will move from on top of HD4 to HD6 - the last neuron
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represented on the same figure.

Important to remember that the whole network is connected in a circular fashion. as

such, when shifting from the last neuron of the array in Brian2, these last neurons are

reconnected to the beginning of the array.

At this step, I had a working Head Direction network. I also had a reset-neuron which

would reset the activity to the current true location, through visual feedback. This can

be seen as a form of loop-closure, or more precisely re-localization. But for now this

network only corrects the error, which with stable conditions would just keep reappear-

ing. The next step of the project was to make the network learn from its errors. For that

I needed a way to compute the neural-offset between the true heading direction and

the by the system believed facing direction.
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Figure 2.9: Instantaneous Firing Rate of neurons representing an angle between 55
and 61 degrees. From 0s to 0.1s, activity when facing other direction. Be-
tween 0.1s and 0.2s (indicated by red bar) during input from drive neurons
(0.1s to 0.2s), indicated by red bar). From 0.2s to 0.6s when facing the
preferred direction without movement.
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during input from drive neurons (0.1s to 0.2s, indicated by red bar), when
self-sustaining (0.2s to 0.6s).
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put from drive neurons (0.1s to 0.2s, indicated by red bar), when self-
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2.4.3 Transformation Arrays / Relational Neural Network

Having a working HD network with self-sustain and a moving hill for different speeds,

the next step was to calculate the error between the true angle and the believed angle

of the system - neurally. To that end, I developed a transformation array (or relational

neural network), which takes two inputs and transforms them into one output, similarly

to a distance matrix. As inputs, it takes an efferent copy of the HD neurons (1) and

a layer of as many neurons which I called feedback neurons (2) representing the real

angle when the visual signal is seen. Both groups of input neurons connect to a grid

of neurons where the computation happens in form of excitation and inhibition of each

grid-neuron.

These input neurons - and by extension both transformation arrays - are driven by the

robot when it sees the visual signal. Otherwise they don’t show activity, nor influence

the HD network.

This (first) transformation array computes the neuron offset between the active HD

neuron and feedback neuron. The HD neurons excite the grid-neurons in the X axis

while the feedback neurons inhibit all grid-neurons except on the Y axis corresponding

to the active grid-neuron.

With this cross-play of slow big spikes of excitation from HD neurons and very quick

successive little inhibition, a single neuron in the whole grid will show prolonged activity.

By reading out the grid-neurons position diagonally, we can see the offset between HD

and feedback neuron as shown on the heat-map on figure 2.12. To translate this

neurally, I connected these grid-neurons using their respective X and Y coordinates

which were set as seen in Listing 1 to the output group of neurons, which I called

Error Neurons or Diagonal Neurons. These error neurons were assigned a positional

value from –k to k, where k is the number of HD neurons (and also feedback neurons),

centered on 0.

Now that I had the amount and direction of the error, I needed to translate this value in

a change of shift-layer. If the HD activity hill was travelling faster than the actual robot,

the model should adapt to use a lower Shifting layer, and if the hill was slower then use

a higher Shifting layer.

To solve this problem, I developed a second transformation array as seen in the lower

right part of figure 2.12, which took the absolute value of the error neurons from the first
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transformation array and the current active relay neuron as inputs. Contrary to the first

transformation array, the second transformation array has two output group of neurons:

Positive Result Neurons and Negative Result Neurons. What this transformation array

essentially does, is map the error during a lap at a certain speed, to a new corrected

speed.

Sadly, I had to simplify this second transformation array for two reasons. First of all, the

activity bump of the HD layer proved to not be consistent enough in between runs or

even in a same simulation over longer run times. The other problem appeared from the

speed at which the HD activity-hill moved in relation to the number of HD neurons. By

moving so fast, the activity hill would sometimes overshoot its target by several whole

rounds.

That’s where I started to implement a group of helper neurons to keep track of the

overshoot in term of laps by the believed internal map. These neurons would be excited

by each their own IHD neuron, since IHD spikes are consistent and don’t have that hill

of activity behaviour. Figure 2.13 depicts the idea of laps being counted by different

membrane potential levels. The idea was to read out this membrane potential for all

helper neurons and average it to get the number of laps that passed. Sadly since IHD

neurons also skip some neurons on higher speeds, this wasn’t reliable... The idea was

dropped, for time reasons, but by knowing the number of IHD that are shifted (which

should correspond to the active relay) I’m positive we could be using this to count laps.

1 eq_IF = " " "

2 dv / d t = ( v_res t – v + Rm∗ ( I _ i n + x i ∗Anoise ∗ ( second ∗∗0.5 ) ) ) / tau : v o l t

3 Anoise : amp

4 v_res t : v o l t

5 Rm : ohm

6 tau : second

7 I _ i n = I_max ∗ ( vrepInp ) : amp

8 I_max : amp

9 vrepInp : 1

10 x : 1 # Pos i t i on X i n space

11 y : 1 # Pos i t i on Y i n space " " "

12

13 grid_Neurons = NeuronGroup ( ( N_Neu∗N_Neu) , eq_IF , th resho ld= ’ v>–40∗mV ’ ,

rese t= ’ v=v_res t ’ , method= ’ eu le r ’ , name=" grid_Neurons " , r e f r a c t o r y = " 2∗ms"

)
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Figure 2.12: Schematic design and connectivity of the two Transformation Arrays. Not
shown, The first transformation array, on the top-left, is driven by visual
feedback, without it, this transformation array doesn’t activate. Blue and
green lines indicate excitatory connections, red inhibitory connections.
Yellow shows the path taken by a signal with inputs from HD1 neuron and
feedback4 neuron.

Figure 2.13: Functionality of lap counter helper neurons. Each presynaptic spike from
the corresponding IHD neuron would excite the helper neuron to a certain
new level which it is kept at by its current inflow. Yellow lines indicate a
new lap, red is the spiking threshold.
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14 # . . .

15 # Se t t i ng g r i d neurons X and Y coord ina tes

16 grid_Neurons . x = ’ i%N_Neu ’ # Def in ing X ’ s p o s i t i o n r e l a t i v e to

index

17 grid_Neurons . y = ’ f l o o r ( i / N_Neu) ’ # Def in ing Y ’ s p o s i t i o n r e l a t i v e to

index

18

19 diag_Neurons = NeuronGroup ( ( ( N_Neu∗2) –1) , eq_IF , th resho ld= ’ v>–40∗mV ’ ,

rese t= ’ v=v_res t ’ , method= ’ eu le r ’ , name=" Diag_Neurons " , r e f r a c t o r y = " 2∗ms"

)

20 # . . .

21 # Se t t i ng diag neurons X coord ina tes such t h a t i t ’ s centered on 0

22 var = ( len ( diag_Neurons . i ) –1) /2

23 diag_Neurons . x = ’ i – var ’

24

25 # Connecting synapses using X and Y v a r i a b l es

26 synapses_cHD_Grid . connect ( ’ y_post== i ’ )

27 synapses_Feedback_Grid . connect ( ’ x_post != i ’ )

28 synapses_Grid_Diag . connect ( c o nd i t i o n = ’ ( y_pre – x_pre==x_post ) ’ )

Listing 1: Connecting Grid Neurons to Error Neurons

Now having a way to compute the error and quantify at least the direction of the cor-

rection, I needed a way to adapt the connectivity such that the network minimizes the

error over time.

2.4.4 Plastic Synapses

Lastly, with a working HD network and transformation arrays, plastic synapses were

implemented between the drive neurons and relay neurons. Each drive neuron con-

nects to all relay neurons of the same direction, which for 10 shifting layers makes 500

synapses per direction.

Fusi synapses show another interesting property, they show 2 states of activity, either

active, or not. The code snippet below ( Listing 2) shows the presynaptic equation

used in Brian2 for the Fusi synapses. In line 5 the amplitude of the weight-update is

clamped between wmin and wmax, which are set to 0 and 1 respectively. In line 6, the

post-membrane potential (vpost) is increased by either the full weight or nothing at all,

thus the synapse behaving in a binary way.
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1 preEq = ’ ’ ’

2 up = 1. ∗ (Ca> the ta_up l ) ∗ (Ca<theta_uph ) ∗ ( v_post > theta_V )

3 down = 1. ∗ (Ca>theta_downl ) ∗ (Ca<theta_downh ) ∗ ( v_post <

theta_V )

4 w += ( wplus ∗ up – wminus ∗ down) ∗ gate

5 w = c l i p (w, w_min ,w_max)

6 v_post += f l o o r (w+0.5) ∗ weight ∗mV

7 ’ ’ ’

Listing 2: Fusi presynaptic equation - Binary model

Development & Results:

While implementing the model was rather trivial, understanding the underlying mecha-

nisms and thus tuning the Fusi synapses required a bit more thoughts.

As is shown on Listing 2, the weight-update rule for the plastic synapses internal weight

(w) depends on w+, w–, ’up’ and ’down’. w+ and w– are the values by which the internal

weight will be updated. ’up’ and ’down’ are binary variables which chose to either

increase or decrease the weight by w+ or w– respectively. ’up’ and ’down’ are set to

1 (True) if the Calcium levels of the postsynaptic neuron is in a defined threshold and

if the post-membrane potential is under or over a set threshold. The calcium simply

increases by a calcium weight-variable each time the postsynaptic neuron fires.

The idea of this model is that, if a postsynaptic neuron (relay neuron in my case)

fires a lot, the Calcium level will rise and reach Ca required for ’up’ drift of the plastic

synapses internal weight. But, also, since the postsynaptic neuron fires a lot, the

postsynaptic membrane-potential will more often be above the required threshold. thus

enabling this ’up’ drift. On the contrary, if a postsynaptic neuron is not firing, post-

membrane potential will be low, also Calcium levels will decay and both this means

that the conditions for a ’down’ drift of the internal weight variable are met.

Now, a new learned connection doesn’t automatically unlearn an old one. To weaken a

previous active connection, I made use of the 1-Winner-Take-All model, which means,

an active neuron inhibits every other neuron. To achieve the expected result, the new

postsynaptic neuron had to fire in a quicker firing rate than the previous one. I achieved

this by inhibiting the drive neurons activity during seeing of the visual signal, which

simultaneously acts as the visual cue to compute the error, and thus to learn new con-

nections. Since the drive neurons are inhibited, the new relay neurons excited through
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the second transformation array have a higher spiking rate - thus winning this Winner-

Take-All competition and inducing strengthening of its own synapses while weakening

the other ones.

Figure FIG shows the evolution of Ca levels and W levels when two relay neurons are

competing. Figure FIG shows how a drive neuron drives a single different relay neuron,

trying to approach the right one for the current speed.

Finally, for a stable network and a stable environment, learning won’t be necessarily

better than hard-wired connections to specific speeds tuned to the environment. The

idea behind learning is more so that for any initial speed, the robot will be able to learn

to map the best matching speed to its internal belief. The beauty behind the idea, is

that flexible speeds and enough time, the robot should be able to learn the perfect

matching speed for any situation.

2.4.5 Weights

Following are listed all the synaptic weights, Table 2.2 lists the different weights and

thresholds for the plastic synapses, Table 2.1 lists all non-synaptic weights.

Weights & Biases:
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Table 2.1: List of non-plastic synaptic weights

Description Name Value

Relay to Shift, Exc syn_Relay_Shift 15mV
Left Relay to Left Shift, Exc syn_LRelay_LShift 15mV
Shift to Integrated Head Direction, Exc syn_Shift_IHD 40mV
LShift to Integrated Head Direction, Exc syn_LShift_IHD 40mV
IHD to HD, Exc syn_IHD_HD 120mV
HD Local Excitation syn_HD_Self_Excitation 19mV
HD Global Inhibition syn_HD_Self_Inhibition –14.2mV
HD to Shift, Inh syn_HD_Shift_Inh –53.6mV
HD to LShift, Inh syn_HD_LShift_Inh –53.6mV
IHD to Lap Counter Neuron, Exc syn_IHD_Round 0.3mA
HD to Efferent HD Copy, Exc syn_HD_cHD 40mV
Error to abssolute error, Exc syn_Diag_AbsErr 40mV
Error to PosInhib, Inh syn_Diag_PosInhib –100mV
Error to NegInhib, Inh syn_Diag_NegInhib –100mV
Pos change to Relay, Exc syn_Pos_Relay 00mV
Pos change to Relay, Inh syn_Pos_Relay_G_Inhib –200mV
Pos change to LRelay, Exc syn_Pos_LRelay 50mV
Pos change to LRelay, Inh syn_Pos_LRelay_G_Inhib –200mV
Neg change to Relay, Exc syn_Neg_Relay 50mV
Neg change to Relay, Inh syn_Neg_Relay_G_Inhib –200mV
Neg change to LRelay, Exc syn_Neg_LRelay 50mV
Neg change to LRelay, Inh syn_Neg_LRelay_G_Inhib –200mV
HD Copy to 1st Transform Grid, Exc syn_cHD_Grid 18mV
Visual Feedback to 1st Transform Grid, Inh. syn_Feedback_Grid –18mV
1st Transform Grid to error, Exc. syn_Grid_Diag 50mV
Abs. Error to 2nd Transform Grid, Exc. syn_AbsErr_Grid 25mV
Drive Copy to 2nd Transform Grid, Inh syn_cDrive_Grid –20mV
2nd Transform Grid to Pos change, Exc. syn_Grid_Pos 40mV
2nd Transform Grid to Neg change, Exc. syn_Grid_Neg 40mV
Relay global inhibition, Inh. wta_Relay –15mV
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Table 2.2: List of plastic synapses weights and values

Description Name Value

Positive weight-update variable w+ 0.2
Negative weight-update variable w– 0.2
Low calcium threshold for strengthening θ

low
up 0

High calcium threshold for strengthening θ
high
up 10

Low calcium threshold for weakening θ
low
down 0

High calcium threshold for weakening θ
high
down 2

Post-membrane potential threshold θV -55mV
Internal weight-variable controlling slow updrift alpha 0.0000001
Internal weight-variable controlling slow downdrift beta 0.0000001
Calcium decay-rate τCa 8ms
Calciums weight variable wCa 1
Minimum value of the synapses internal weight wmin 0
Maximum value of the synapses internal weight wmax 1
Threshold which stabilizes internal weight at wmax or wmin θw 0.5
The synapses output weight, when it’s active.. weight 8
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3 Results

In this section I will summarize the results of the project as well include any significant

results that shaped the development of this work that have not been covered yet.

3.1 Head Direction with fixed synapses and visual reset

The Head Direction Network which runs on fixed non-plastic synapses runs stable on

10 different speeds. These speeds are defined by the shifting through the shifting

layers.

In the final version of the HD network, I used 180 HD neurons and 10 shift layers as a

base for the whole network. This meant: 10 sub-populations of each 5 Drive neurons,

10 relay neurons, 10∗180 Shift neurons, 180 IHD neurons and 180 reset neurons. The

firing rate of active neurons (except self-sustaining) was tuned to run around 130Hz.

Using this configuration in conjunction with the listed weights in Table 2.1, and a inter-

action kernel (lateral HD interaction) of 1, I ran several runs of 10 seconds per speed

and calculated the average angular velocity as generated from the HD network, as well

as the standard deviation. Figure 3.1 plots the angular speed of the 10 shift layers in

angles per second and figure 3.2 plots the average speeds of the different runs adding

standard deviation, we clearly can see that the 2 first shift layers behave differently.

The dotted lines in Figure 3.1 indicate the two first shifting speeds which I highlighted

because their values varied significantly compared to the rest. This variation comes

very likely from the fact that the shifts produced by these two shifting layers (shifting

by 1 and 2, respectively) acts on HD neurons right near the hill of activity. The hill of

activity is always composed of 3 active neurons, and since each active neuron also

laterally (by 1) excites their neighbour, the inhibition doesn’t reach its global minimum

until the 2nd neuron further from the main active one. To circumvent this oddity, one

could increase the inhibition to act inversely to the excitation by the activity hill. This

can be done by using Mexican Hat Style function5 to scale the weights as to achieve a

uniform activity [Schneegans, 2015], but this was considered out scope for this study.

Having the average angular velocities per shift-layer, I converted the values to use them

in the robot. I then ran the robot multiple simulations of different lengths and compared

5https://en.wikipedia.org/wiki/Mexican_hat_wavelet
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the angular error over time - a summary of the data can be found on table 3.1. Next, I

reran the simulations using the visual reset. Every time the robot saw the visual signal,

the reset neurons would reset the activity hill to the correct angle. Again, I plotted the

networks believed direction to the true angle.
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Figure 3.1: Average change in angle over a duration of 1 second, which is the angular
velocity ω. Dashed lines indicate Shift layers 0 and 1 which behave differ-
ently due to local excitation from HD neurons.

3.2 Transformation Arrays

The transformation arrays are running only a small fraction of time during each run, as

such, their plots show rather little insightful information. But it’s important to remember

that its these transformation arrays that initiate learning which is presented in the next

section.
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Figure 3.2: Average velocity for each drive neuron, shift-layer. We can see that the first
two shift-layers shift faster in a non-linear fashion relatively to the others.
This is due to the relatively low inhibition acting on the HD neurons they
shift on. Bars indicate standard deviation. All data can be found on table 3.1

3.3 Learning - STDP

Unfortunately, my PC kept crashing trying to plot the weights evolution from a run,

even by trying to extract only half a second of data. As such, I’ll be presenting the

behaviour and evolution of calcium3.3 levels and the internal weight3.4 in a small con-

trolled simulation of 1 neuron learning to connect to another neuron and weakening its

connection to a third neuron. From the real run, we can visualize the effect of learning

by watching evolution of the relay neurons. Figure 3.5 shows exactly that. The different

relay neurons are activated a single one at a time from the WTA connectivity. All these

are driven by a single drive neuron which strengthens and weakens its connections

to the different relay neurons at each time it sees the light. Another simulation shows

a limitation of the current second transformation array and learning-behaviour 3.6; as

we can see, we could think that after the first learning-pass at around 5 seconds, the

network would keep that speed which seems to correspond rather well to the actual

robot-speed. But as seen on figure3.7, another relay is learned and the correct one

unlearned, at least until the next learning-iteration. The network continuously tries to

refine its actual speed, and as such, will never end up learning a long-term connection.

To correct this, the next step would be to add some error margins, since as we can see,

even when the current active relay neuron incites a rather good response, the network

currently forces it to learn another connection. This is due to the way that the second

transform array wasn’t properly tuned and requires more work. Currently it only forces

the drive neuron to connect to a lower or higher relay neuron at each incoming visual
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5+ Runs of each Average
2 Laps 4 Laps 10 Laps 15 Laps Degree/Sec Rad/Sec STDev

Drive 0 49.21 33.38 46.9 45.9 43.85 0.77 7.12 Diff
Drive 1 78.54 74.89 74.97 71.53 74.98 1.31 2.86 31.13
Drive 2 57.50 48.00 55.7 60.19 55.35 0.97 5.23 -19.63
Drive 3 90.14 108.13 85.91 93.52 94.43 1.65 9.65 39.08
Drive 4 136.46 134.96 153.46 171.38 149.06 2.6 17.08 54.63
Drive 5 201.38 211.93 195.81 187.79 199.23 3.48 10.14 50.17
Drive 6 244.89 222.39 243.83 209.75 230.21 4.02 17.13 30.98
Drive 7 254.56 253.06 273.12 277.68 264.61 4.62 12.62 34.4
Drive 8 272.18 288.28 282.78 289.23 283.12 4.94 7.83 18.51
Drive 9 330.95 370.35 283.43 312.67 324.35 5.66 36.38 41.23

38.43

Table 3.1: Table showing the the average angular velocities over multiple runs of differ-
ent lengths.

cue.
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Figure 3.3: Calcium evolution during learning. On quick post-synaptic spikes-
successions, the Calcium concentration goes up. The threshold to
strengthen the connection being between 0 and 4 and weaken 0 and 2,
going above 2 ensures learning.

Figure 3.5 shows the evolution of an active relay neuron during a run with a single

speed. The selected drive neuron is initially connected to the first "out-of-the-hill" re-

lay neuron (basically, excluding shifts 1 and 2, which I studied apart because of the

difference seen before). At each visual cue, the network learns to connect to a new

relay neuron, the WTA mechanism ensures that at all times a single relay neuron is

active - thus stabilizing the network. – Plot: Error diminution; Fusi-weights evolution;

Adaptation/Learning for multiple speeds; Error over time with/without learning
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Figure 3.4: Internal weight evolution during learning. After reaching the internal-weight
threshold (at around 0.5) it automatically stabilizes to 0 or 1 depending from
where it reached that threshold. Zoomed-in part shows the evolution on a
per-event (spike) basis.

Figure 3.5: Relay neurons activity depending on current learned connections by the
active drive sub-populations.
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Figure 3.6: Drive Neuron continuously tries to learn new connections, even when HDs
pace is very close to actual angular velocity.
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Figure 3.7: Relay neurons activity fluctuating near the correct speed, due to lack of
long-term learning by considering error margins or a slower learning time
(which isn’t feasible with the speeds of this network. Blue lines indicate
visual cue, inciting learning.)
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Figure 3.8: A summary to show the effect of a run without help, one using visual reset
and a last one using learning. In dark blue is represented the true angle of
the robot. The red line represents the run on HD without any re-localization
or learning. Grey represents the run aided by reset/re-localization at each
turn it sees the light. Finally, yellow represents a run with a random initial
speed.

3.4 Project Results

Figure 3.8 summarizes and visualizes two runs which I found interesting. The first two

plots plot the same run, the top one omits the learning run. I just wanted to highlight

how a run with little noise could be very well managed with HD network only using

reset. Comparing to the red line which never resets, there’s a very clear difference.

The second plot was an interesting contrast to figure 3.6. While learning could some-

times work perfectly like in 3.6, sometimes with bad luck, it would keep overshooting or

undershooting its target like in the second plot of the current example in yellow. But it

kept trying to approach the right speed.

Finally, the last plot was something related to the robot, which I didn’t think about until

the very end. For shorter runs, the acceleration required by the robot to reach the

defined speed can take a very long time.
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4 Discussion

During this thesis major findings of the study - Achieved HD Implementation, devel-

oped 3 models for self-sustain, SCALABLE!!! – 1) voltage-based self-sustain (+: easy

to implement, -: Spiking rate not under control (spikes at each clock-step), dies with re-

fraction, heavily influenced by noise (noise can either kill the peak, or create a second

peak leading to explosion of spikes in the whole network, since it ticks so fast, global

inhibition and local excitation are hard to control) – 2) Transformation-array inspired,

using "0th" speed-layer (+: rather easy to implement, -: not biologically true, no "true"

self-sustain – 3) Semi current-driven: - Developed and Implemented 2 neural opera-

tions through transformation arrays – Difference, +/- - Learning works, rudimentarily

- More Neurons = More precision = More stable = More speeds (for voltage-based

model)

- Could help solve learning/adapting of speeds (i.e. different environmental situations

affecting roboter speed on-terrain) for autonomous robots

- While scalable, shifting-speed is less easily changed

– Means, with little number of neurons, little precision

- Transformation arrays: Practical way to compare similar info stored by neurons

4.1 Issues & Limitations

While working on this project, several issues and limitations appeared, these will be

listed in this following paragraph, with ideas or advises for future works that didn’t make

it into this thesis.

The very first big issue was the synchronization between V-REP and Brian2. Brian2 re-

quires time computing the neural network. We tried synchronizing V-REP to Brian2, but

everything seemed to fail. We thought about using ROS (Roboter Operating System6),

but I ended up gathering V-REPs run-data and using it as input for Brian2.

Another big limitation, I felt, was the use of purely voltage-based synapses and neu-

rons. While it simplified the implementation. It severely limited the tuning. Most neu-

rons presenting no current inflow severely complicated the control of spiking behaviour

and spiking rate.

6www.ros.org
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As such, the only way to control the speed of HD, was increasing the number of neu-

rons. Which with all connectivity depending on this size, exponentially grew the size

of the network - especially the number of synapses - resulting in memory errors and

overflow when trying to record variables using StateMonitor.

The resulting speed in relation to the size of the network that was used was still very

fast. In learning, for higher shifting-layers, the HD network would overshoot the rotation

by several full-rotations if the initial wrong relay was too far from the true one. I tried

fixing this by adding a neuron which would count the laps by increasing its current

inflow. But for higher speeds, so many HD neurons were shifted that counting their

activity became unreliable.

4.2 Further Work

As mentioned earlier, while my current implementation of learning isn’t complete nor

100% reliable, I really do think it’s an achievable goal and something worth studying

and working on. As next steps for further research, I would try solving the problem of

lap-counting, for when there are huge miss-matches between actual angular velocity

and believed angular velocity. Further, I would explore the options to have flexible

speeds instead of set speeds, this would allow for a much smoother adaptation. The

second transformation array which maps error to the new relay-neuron also seems

promising, and I’ll be personally exploring this in the near future. Finally, adapting the

local excitation-inhibition ratio as to have a smooth shifting curve with different speeds,

by using a function such as Difference of Gaussian or ’Mexican Hat’.
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The aim of this study was to implement a neurally inspired Head Direction network, in-

cluding a self-sustaining hill of activity, and shifting behaviour through angular velocity

integration. Further, a visual reset to re-localize the HD activity correctly was imple-

mented. Error-computation and error-correction are achieved during the reset. Lastly,

learning through synaptic plasticity was studied and implemented.

As has been shown throughout this thesis, it is possible to implement the neurally

inspired Head Direction network using the Brian2 spiking neural network simulator.

Additionally, three three different ways to induce self-sustain behaviour to create the

typical hill of activity on the ring-attractor network have been developed. Each with

their own advantages and limitations. For the rest of this study, a single model was

chosen.

Modulation of the travel-speed of the activity-hill on the ring attractor network was pos-

sible through addition of shifting layers. Each new shift bringing a bigger neural shift

corresponding to a set increase in speed. This method of shifting layers to generate

different hill-movement speeds may result in simpler implementations but come with

the drawback of having a non-continuous speed-curve but instead set speeds. One

limitation to consider in this study being that the local excitation causes the shifting

layers that act inside the local excitation in the HD layer to behave differently than the

rest.

Additionally, a neural architecture has been developed allowing error computation be-

tween 2 groups of neurons representing similar information. This architecture also

allows the reclassification of information and thus approaches loop closure through

error-correction and learning / adaptation.

Learning was the last studied part of this project, it has shown successful and promising

results on single-trials, although there are problems with higher speeds because of the

short time available to learn. This has been corrected for higher speeds through a

non-neural solution, by simply artificially increasing the time available for learning.

To improve the system, the speed of the hill movement should be able to change in

smaller iterations. This could be achieved by either increasing the number of neurons

- which would cost more computation power, or add a current or conductance based

synapse model which would permit a better fine-tuning of the system. Further, the
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second transformation array should be tuned, or set to learn, the error-margins to adapt

connectivity to a new relay neuron. As mentioned before, the local HD inhibition should

be adapted to counteract on the lateral excitation as to smooth-out the neural response

from incoming shifts through the IHD neurons. With these improvements in mind, the

network could enhance and help solving a fully functioning loop-closure system for

SLAM, allowing for fully autonomous robots.
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